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Chapter 15
Electrical Potential Chapter Review

EQUATIONS:

•  
  
V A = U

q




 A

   [This is the definition of the absolute electrical potential VA.  Essentially a

modified potential energy function, it is a scalar quantity that identifies the amount of
potential energy per unit charge available at a point.  Its units are joules per coulomb, or
volts, and sometimes it is called the electrical potential or just the voltage.  An electrical
potential field can exist whether there is a charge in the region to experience the field or
not.]

•  UA = qVA   [A manipulation of the definition of electrical potential, this expression allows

you to determine the amount of potential energy U a charge q has when placed in a field at
a point where the electrical potential Va is known.  This expression is ALWAYS TRUE.]

•  
  

W
q

= −∆V    [The work done by a conservative force as a body moves from one point to another

in the force field is equal to the change of the body's potential energy in so moving, or
  W = −∆U .  As electrical potentials are modified potential energy functions, and electric
fields are modified force fields, it is true that the work per unit charge  W/q available
between two points in an electric field equals   −∆V .]

•    W = −q∆V    [This is a modification of the expression presented directly above.  ALWAYS
true, it relates the amount of work an electric field does on an object that moves from one
point in the field to another.]

•      E • d = −∆V    [Assuming that E is constant, this is the relationship between the electrical
potential difference   ∆V  between two points a distance d units apart, and the electric field
E that must exist if the electrical potential difference   ∆V is to exist.  Please note that the d
vector extends from the initial point to the final point, and that θ  is the angle between d
(as defined) and the electric field vector E.  Also note that, when expanded, this dot
product becomes 

    
Ed cosθ = −(V final pt. − Vinitial pt. ).]

•  
    

E • dr
pt 1
pt 2

∫ = −(V2 − V1 )    [This integral calculates the amount of work per unit charge

available between two points in a variable electric field.  This work per unit charge
quantity is equal to the opposite of the electrical potential difference (i.e., -  ∆V ) between
the two points.  This expression is ALWAYS TRUE, but     E • d = −∆V  is easier to use if
you are lucky enough to be working with a constant electric field.]

•  
    
V x( ) − V where E is zero( ) = − E • dr

where E is zero

x
∫    [Just as     U x( ) − U where F is zero( ) =

    
− F • dr

where F is zero

x
∫  is used to derive a potential energy function from a known force
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function, this relationship is used to derive an electrical potential function from a known
electric field function.  The integral determines the amount of work per unit charge done by
the field as a test charge is moved from the field's zero point to some arbitrary point x.  That
is related to the electrical potential function as shown.  Note that the notation used above is
Cartesian.  Though you will never use polar spherical notation, the expression is usually

presented theoretically as 
    
V r( ) − V where E is zero( ) = − E • dr

where E is zero

r
∫ .]

•  
  
V r( ) = 1

4πεo

Q
r

   [This derived function defines the electrical potential field due to a POINT

CHARGE.  Use it ONLY when the field you are working with has been produced by a
point charge!]

•  
  
dV = 1

4πεo

dq
r

   [This is the differential electrical potential dV generated by a differential bit

of charge dq (a point charge) that is a distance r units from a point of interest.  If you are
dealing with an extended charge configuration and dq is arbitrarily positioned within
that structure, the sum of all such dV's will yield the net electrical potential at the point.

Mathematically, this is expressed as 
  
V = dV∫ = 1

4πεo

dq
r∫ .  This approach is usually

used for charged rods, hoops, and disks.  It is not used when dealing with three
dimensional structures like charged spheres or cylinders.  There is another approach
used in those situations.]

•     V(r) = [V(c) - V(at zero-potential position)] + [V(b) - V(c)] + [V(r) - V(b)]   [This kind of
expression is used to determine the electrical potential a distance r units from a complex
spherical or cylindrical charge configuration in which different electric field functions
exist for different regions between the point and the field's zero point (this is often at
infinity).  To execute this expression, one must determine, then sum, the electrical
potential differences that exist between the boundaries of those regions.  To do so, Gauss's
Law must be used to determine the electric field in each region, then the general

relationship 
    
[ V b( ) − V a( ) ] = − E1 • dr

a

b
∫  must be used to determine the electrical potential

jump associated with each region between the zero position and the point of interest.]

•      E = −∇V    [Given an electrical potential function V (remember, V is a scalar), the electrical
potential's electric field E is equal to the opposite of the del operator acting on V.  This
suggests a clever way of determining an electric field vector.  For a given charge
configuration, determine the electrical potential field function AT AN ARBITRARY
POINT IN SPACE, use the del operator to derive the electric field function at that
arbitrary point, then evaluate that electric field function at the point of interest.]

COMMENTS, HINTS, and THINGS to be aware of:

•  There are all sorts of things you should be able to do in this chapter.  You should be able to
determine the amount of work an electrical potential field does as a body moves from one
point to another in the field (use   W = −q∆V ); relate an electrical potential difference   ∆V
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to E in a constant electric field (use     E • d = −∆V ); deal with conservation of energy when
electric fields are present (remember, U = qVA); derive an electrical potential function

given an electric field (use 
    
V r( ) − V where E is zero( ) = − E • dr

where E is zero

r
∫ ); do this last

operation when there are several unknown electric fields involved in an oddball charge
configuration (a layered sphere, for instance--you'll need to utilize Gauss's Law in such
cases); derive an electric field function given its associated electrical potential function
(use     E = −∇V ); and deal with point charges.  In short, there are lots of odds and ends to
deal with in this chapter.

•  Remember that the electrical potential of a positive charge configuration is positive and that
of a negative charge configuration is negative.  Remember also that electrical potentials
are SCALARS, so positive and negative signs don't denote direction.

•  Note that as the del operator is a partial derivative with respect to a spatial coordinate

(example: 
  

∂
∂x

), and as     ∇V = − E , the electric field is related to the rate of change of the

electrical potential with position.

•  You now have three ways to determine an electric field:  the definition approach that defines
a dq, determines dE at the point of interest, breaks dE into components, then sums via
integration all of the differential fields along a particular direction to get the net field in
that direction; Gauss's Law, which is useful whenever you have three dimensional
symmetry; and, now, the electrical potential approach that makes use of the relationship
    E = −∇V .

•  Be careful when you determine a charge's potential energy in a conservation of energy
problem.  The potential energy of a negative charge is U = (-q)V.

•  Remember, a positive charge will accelerate from higher to lower electrical potential, or
along the electric field lines.  Negative charges do the exact opposite, accelerating from
lower to higher electrical potential against the electric field lines.

•  An equipotential line is a line upon which the electrical potential is the same everywhere.
Equipotential lines are ALWAYS perpendicular to electric field lines.


